Skip to Content
DocumentationResult File ReadingReading MaxLynx/MaxQuant Result Files

Reading MaxLynx/MaxQuant Result Files

from pyXLMS import __version__ print(f"Installed pyXLMS version: {__version__}")
βœ“
Installed pyXLMS version: 1.5.1
from pyXLMS import parser from pyXLMS import transform

All functionality to parse crosslink-spectrum-matches (CSMs) from MaxLynx/MaxQuant result files is available via the parser submodule. We also import the transform submodule to show some summary statistics of the read files.

PS: The terms MaxLynx and MaxQuant will be used interchangeably in this notebook.

Reading MaxLynx Result Files via parser.read()

parser_result = parser.read( "../../data/maxquant/run1/crosslinkMsms.txt", engine="MaxLynx", crosslinker="DSS", )
βœ“
Reading MaxQuant CSMs...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 730/730 [00:00<00:00, 3337.91it/s]

We can read any crosslinkMsms.txt MaxLynx result file using the parser.read() method and setting engine="MaxLynx". The method also requires us to specify the used crosslinker, in this case DSS was used (crosslinker="DSS"). You can read the documentation for the parser.read() method here: docs.

for k, v in parser_result.items(): print(f"{k}: {type(v) if isinstance(v, list) else v}")
βœ“
data_type: parser_result completeness: partial search_engine: MaxQuant crosslink-spectrum-matches: <class 'list'> crosslinks: None

The parser.read() method returns a dictionary with a set of specified keys and their values. We refer to this dictionary as a parser_result object. All parser.read* methods return such a parser_result object, you can read more about that here: docs, and here: data types specification.

As you can see from the parser_result the MaxLynx result file contained CSMs. We would be able to access those via parser_result["crosslink-spectrum-matches"]. We will do this a bit further down.

_ = transform.summary(parser_result)
βœ“
Number of CSMs: 730.0 Number of unique CSMs: 730.0 Number of intra CSMs: 728.0 Number of inter CSMs: 2.0 Number of target-target CSMs: 723.0 Number of target-decoy CSMs: 6.0 Number of decoy-decoy CSMs: 1.0 Minimum CSM score: 13.746 Maximum CSM score: 375.86

With the transform.summary() method we can also print out some summary statistics about our read CSMs. You can read more about the method here: docs.

sample_csm = parser_result["crosslink-spectrum-matches"][0] for k, v in sample_csm.items(): print(f"{k}: {v}")
βœ“
data_type: crosslink-spectrum-match completeness: partial alpha_peptide: GQKNSR alpha_modifications: {3: ('DSS', 138.06808)} alpha_peptide_crosslink_position: 3 alpha_proteins: ['Cas9'] alpha_proteins_crosslink_positions: [779] alpha_proteins_peptide_positions: [777] alpha_score: 46.6176724042364 alpha_decoy: False beta_peptide: GQKNSR beta_modifications: {3: ('DSS', 138.06808)} beta_peptide_crosslink_position: 3 beta_proteins: ['Cas9'] beta_proteins_crosslink_positions: [779] beta_proteins_peptide_positions: [777] beta_score: 46.6176724042364 beta_decoy: False crosslink_type: intra score: 46.618 spectrum_file: XLpeplib_Beveridge_QEx-HFX_DSS_R1 scan_nr: 2257 charge: 3 retention_time: None ion_mobility: None additional_information: {'Proteins1': 'Cas9', 'Proteins2': 'Cas9', 'Delta score': 42.731}

Using parser_result["crosslink-spectrum-matches"][0] we can get the first CSM of the file and take a closer look at that.

Here is an example CSM, you can learn more about the specific attributes and their values here: docs, and here: data types specification.


type(parser_result["crosslinks"])
βœ“
NoneType

In this example parser_result["crosslinks"] is None because MaxLynx does not report any crosslinks. Therefore, no crosslinks can be displayed here.


parser_result = parser.read( "../../data/maxquant/run2/crosslinkMsms.txt", engine="MaxLynx", crosslinker="DSS", parse_modifications=False, )
βœ“
Reading MaxQuant CSMs...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 730/730 [00:00<00:00, 9603.73it/s]

We can also tell the parser to not parse modifications via parse_modifications=False, this might be useful if you don’t care about post-translational-modifications, or if you have unknown modifications in your results that you would have to manually specify - and you don’t want to do that.

In case you want to parse modifications but have unknown modifications in your results, you have to set them via the modifications parameter that can be passed via **kwargs to parser.read_maxlynx(). More about that later…

sample_csm = parser_result["crosslink-spectrum-matches"][0] for k, v in sample_csm.items(): print(f"{k}: {v}")
βœ“
data_type: crosslink-spectrum-match completeness: partial alpha_peptide: GQKNSR alpha_modifications: None alpha_peptide_crosslink_position: 3 alpha_proteins: ['Cas10'] alpha_proteins_crosslink_positions: [790] alpha_proteins_peptide_positions: [788] alpha_score: 46.6176724042364 alpha_decoy: False beta_peptide: GQKNSR beta_modifications: None beta_peptide_crosslink_position: 3 beta_proteins: ['Cas10'] beta_proteins_crosslink_positions: [790] beta_proteins_peptide_positions: [788] beta_score: 46.6176724042364 beta_decoy: False crosslink_type: intra score: 46.618 spectrum_file: XLpeplib_Beveridge_QEx-HFX_DSS_R1 scan_nr: 2257 charge: 3 retention_time: None ion_mobility: None additional_information: {'Proteins1': 'Cas10(Cas10;Cas9)', 'Proteins2': 'Cas10(Cas10;Cas9)', 'Delta score': 42.731}

Notice that this time the fields alpha_modifications and beta_modifications are empty (None) for our sample CSM in contrast to when we looked at it further up.


Reading MaxLynx Result Files via parser.read_maxlynx()

parser_result = parser.read_maxlynx( "../../data/maxquant/run1/crosslinkMsms.txt", crosslinker="DSS" )
βœ“
Reading MaxQuant CSMs...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 730/730 [00:00<00:00, 11311.62it/s]

We can also read any MaxLynx result file using the parser.read_maxlynx() method which allows a more nuanced control over reading MaxLynx result files - even though theoretically everything can be done with the parser.read() function as well. You can read the documentation for the parser.read_maxlynx() method here: docs.

_ = transform.summary(parser_result)
βœ“
Number of CSMs: 730.0 Number of unique CSMs: 730.0 Number of intra CSMs: 728.0 Number of inter CSMs: 2.0 Number of target-target CSMs: 723.0 Number of target-decoy CSMs: 6.0 Number of decoy-decoy CSMs: 1.0 Minimum CSM score: 13.746 Maximum CSM score: 375.86

from pyXLMS.constants import MODIFICATIONS MODIFICATIONS
βœ“
{'Carbamidomethyl': 57.021464, 'Oxidation': 15.994915, 'Phospho': 79.966331, 'Acetyl': 42.010565, 'BS3': 138.06808, 'DSS': 138.06808, 'DSSO': 158.00376, 'DSBU': 196.08479231, 'ADH': 138.09054635, 'DSBSO': 308.03883, 'PhoX': 209.97181, 'DSG': 96.0211293726}

By default the MaxLynx parser considers all modifications that are in constants.MODIFICATIONS as shown above for pyXLMS version 1.5.1 - a full list of default modifications is given here: docs.

my_mods = dict(MODIFICATIONS) my_mods["Methyl"] = 14.01565 my_mods
βœ“
{'Carbamidomethyl': 57.021464, 'Oxidation': 15.994915, 'Phospho': 79.966331, 'Acetyl': 42.010565, 'BS3': 138.06808, 'DSS': 138.06808, 'DSSO': 158.00376, 'DSBU': 196.08479231, 'ADH': 138.09054635, 'DSBSO': 308.03883, 'PhoX': 209.97181, 'DSG': 96.0211293726, 'Methyl': 14.01565}

If you have any additional modifications in your result file(s) the parser needs to know about them, which is done via the modifications parameter that allows for passing a custom dictionary of modifications. It is usually a good idea to base this custom dictionary on constants.MODIFICATIONS and add your modifications after, as shown above for methylation.

parser_result = parser.read_maxlynx( "../../data/maxquant/run1/crosslinkMsms.txt", crosslinker="DSS", modifications=my_mods, )
βœ“
Reading MaxQuant CSMs...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 730/730 [00:00<00:00, 10500.97it/s]

You can then pass the full list of expected modifications my_mods via the modifications parameter.

_ = transform.summary(parser_result)
βœ“
Number of CSMs: 730.0 Number of unique CSMs: 730.0 Number of intra CSMs: 728.0 Number of inter CSMs: 2.0 Number of target-target CSMs: 723.0 Number of target-decoy CSMs: 6.0 Number of decoy-decoy CSMs: 1.0 Minimum CSM score: 13.746 Maximum CSM score: 375.86

There are several other parameters that can be set, you can read more about them here: docs.

Last updated on