Reading xiSearch/xiFDR Result Files
from pyXLMS import __version__
print(f"Installed pyXLMS version: {__version__}") Installed pyXLMS version: 1.5.2from pyXLMS import parser
from pyXLMS import transformAll functionality to parse crosslink-spectrum-matches (CSMs) and crosslinks (XLs) from xiSearch and xiFDR result files is available via the parser submodule. We also import the transform submodule to show some summary statistics of the read files.
Reading xiSearch/xiFDR Result Files via parser.read()
parser_result = parser.read(
"../../data/xi/1perc_xl_boost_CSM_xiFDR2.2.1.csv",
engine="xiSearch/xiFDR",
crosslinker="BS3",
) Reading xiFDR CSMs...: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 413/413 [00:00<00:00, 6203.70it/s]We can read xiSearch and xiFDR result files by using the parser.read() method and setting engine="xiSearch/xiFDR", in this example using a CSMs result file from xiFDR. The method also requires us to specify the crosslinker that was used for the experiment, which in this case is BS3 (crosslinker="BS3"). You can read the documentation for the parser.read() method here: docs.
for k, v in parser_result.items():
print(f"{k}: {type(v) if isinstance(v, list) else v}") data_type: parser_result
completeness: partial
search_engine: xiSearch/xiFDR
crosslink-spectrum-matches: <class 'list'>
crosslinks: NoneThe parser.read() method returns a dictionary with a set of specified keys and their values. We refer to this dictionary as a parser_result object. All parser.read* methods return such a parser_result object, you can read more about that here: docs, and here: data types specification.
As you can see from the parser_result the xiFDR result file contains CSMs. See crosslink-spectrum-matches: <class 'list'> in the print out. We would be able to access those via parser_result["crosslink-spectrum-matches"]. We will do this a bit further down.
_ = transform.summary(parser_result) Number of CSMs: 413.0
Number of unique CSMs: 413.0
Number of intra CSMs: 413.0
Number of inter CSMs: 0.0
Number of target-target CSMs: 411.0
Number of target-decoy CSMs: 2.0
Number of decoy-decoy CSMs: 0.0
Minimum CSM score: 6.808
Maximum CSM score: 27.268With the transform.summary() method we can also print out some summary statistics about the CSMs in the file. You can read more about the method here: docs.
sample_csm = parser_result["crosslink-spectrum-matches"][0]
for k, v in sample_csm.items():
print(f"{k}: {v}") data_type: crosslink-spectrum-match
completeness: partial
alpha_peptide: KIECFDSVEISGVEDR
alpha_modifications: {1: ('BS3', 138.068), 4: ('Carbamidomethyl', 57.021464)}
alpha_peptide_crosslink_position: 1
alpha_proteins: ['Cas9']
alpha_proteins_crosslink_positions: [575]
alpha_proteins_peptide_positions: [575]
alpha_score: None
alpha_decoy: False
beta_peptide: KIECFDSVEISGVEDR
beta_modifications: {1: ('BS3', 138.068), 4: ('Carbamidomethyl', 57.021464)}
beta_peptide_crosslink_position: 1
beta_proteins: ['Cas9']
beta_proteins_crosslink_positions: [575]
beta_proteins_peptide_positions: [575]
beta_score: None
beta_decoy: False
crosslink_type: intra
score: 27.268
spectrum_file: XLpeplib_Beveridge_QEx-HFX_DSS_R1.mgf
scan_nr: 19140
charge: 4
retention_time: None
ion_mobility: None
additional_information: NoneUsing parser_result["crosslink-spectrum-matches"][0] we can get the first CSM of the file and take a closer look at that.
This is an example CSM, you can learn more about the specific attributes and their values here: docs, and here: data types specification.
parser_result = parser.read(
"../../data/xi/1perc_xl_boost_Links_xiFDR2.2.1.csv",
engine="xiSearch/xiFDR",
crosslinker="BS3",
) Reading xiFDR crosslinks...: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 227/227 [00:00<?, ?it/s]We can also as easily read a xiFDR crosslink result file using parser.read() - the parser automatically recognizes which kind of file is being read by the contents of the file.
_ = transform.summary(parser_result) Number of crosslinks: 227.0
Number of unique crosslinks by peptide: 227.0
Number of unique crosslinks by protein: 227.0
Number of intra crosslinks: 227.0
Number of inter crosslinks: 0.0
Number of target-target crosslinks: 225.0
Number of target-decoy crosslinks: 2.0
Number of decoy-decoy crosslinks: 0.0
Minimum crosslink score: 9.619
Maximum crosslink score: 40.679The transform.summary() method also works for printing summary statistics for the crosslinks.
sample_crosslink = parser_result["crosslinks"][0]
for k, v in sample_crosslink.items():
print(f"{k}: {v}") data_type: crosslink
completeness: full
alpha_peptide: VVDELVKVMGR
alpha_peptide_crosslink_position: 7
alpha_proteins: ['Cas9']
alpha_proteins_crosslink_positions: [753]
alpha_decoy: False
beta_peptide: VVDELVKVMGR
beta_peptide_crosslink_position: 7
beta_proteins: ['Cas9']
beta_proteins_crosslink_positions: [753]
beta_decoy: False
crosslink_type: intra
score: 40.679
additional_information: NoneJust like for the CSMs, we can also look into specific crosslinks using parser_result["crosslinks"].
Here is an example crosslink, you can learn more about the specific attributes and their values here: docs, and here: data types specification.
parser_result = parser.read(
[
"../../data/xi/1perc_xl_boost_CSM_xiFDR2.2.1.csv",
"../../data/xi/1perc_xl_boost_Links_xiFDR2.2.1.csv",
],
engine="xiSearch/xiFDR",
crosslinker="BS3",
) Reading xiFDR CSMs...: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 413/413 [00:00<00:00, 42011.19it/s]
Reading xiFDR crosslinks...: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 227/227 [00:00<00:00, 22812.61it/s]It is also possible to read multiple files into one parser_result, this for example makes sense if you have XLs and CSMs from the same run.
_ = transform.summary(parser_result) Number of CSMs: 413.0
Number of unique CSMs: 413.0
Number of intra CSMs: 413.0
Number of inter CSMs: 0.0
Number of target-target CSMs: 411.0
Number of target-decoy CSMs: 2.0
Number of decoy-decoy CSMs: 0.0
Minimum CSM score: 6.808
Maximum CSM score: 27.268
Number of crosslinks: 227.0
Number of unique crosslinks by peptide: 227.0
Number of unique crosslinks by protein: 227.0
Number of intra crosslinks: 227.0
Number of inter crosslinks: 0.0
Number of target-target crosslinks: 225.0
Number of target-decoy crosslinks: 2.0
Number of decoy-decoy crosslinks: 0.0
Minimum crosslink score: 9.619
Maximum crosslink score: 40.679If the parser_result contains both crosslinks and CSMs, summary statistics for both will be calculated by transform.summary().
parser_result = parser.read(
"../../data/xi/r1_Xi1.7.6.7.csv",
engine="xiSearch/xiFDR",
crosslinker="BS3",
parse_modifications=False,
) Reading xiSearch CSMs...: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 4648/4648 [00:00<00:00, 24450.57it/s]It is of course also possible to read the full, unfiltered and unvalidated search results from xiSearch before they have been processed with xiFDR.
parser_result = parser.read(
"../../data/xi/1perc_xl_boost_CSM_xiFDR2.2.1.csv",
engine="xiSearch/xiFDR",
crosslinker="BS3",
parse_modifications=False,
) Reading xiFDR CSMs...: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 413/413 [00:00<00:00, 23591.42it/s]We can also tell the parser to not parse modifications via parse_modifications=False, this might be useful if you do not care about post-translational modifications, or if you have unknown modifications in your results that you would have to manually specify.
In case you want to parse modifications but have unknown modifications in your results, you have to set them via the modifications parameter that can be passed via **kwargs to parser.read_xi(). We will get back to that.
sample_csm = parser_result["crosslink-spectrum-matches"][0]
for k, v in sample_csm.items():
print(f"{k}: {v}") data_type: crosslink-spectrum-match
completeness: partial
alpha_peptide: KIECFDSVEISGVEDR
alpha_modifications: None
alpha_peptide_crosslink_position: 1
alpha_proteins: ['Cas9']
alpha_proteins_crosslink_positions: [575]
alpha_proteins_peptide_positions: [575]
alpha_score: None
alpha_decoy: False
beta_peptide: KIECFDSVEISGVEDR
beta_modifications: None
beta_peptide_crosslink_position: 1
beta_proteins: ['Cas9']
beta_proteins_crosslink_positions: [575]
beta_proteins_peptide_positions: [575]
beta_score: None
beta_decoy: False
crosslink_type: intra
score: 27.268
spectrum_file: XLpeplib_Beveridge_QEx-HFX_DSS_R1.mgf
scan_nr: 19140
charge: 4
retention_time: None
ion_mobility: None
additional_information: NoneNotice how the fields alpha_modifications and beta_modifications are now empty (None) for our sample CSM in contrast to when we looked at it further up.
Reading xiSearch/xiFDR Result Files via parser.read_xi()
parser_result = parser.read_xi("../../data/xi/1perc_xl_boost_CSM_xiFDR2.2.1.csv") Reading xiFDR CSMs...: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 413/413 [00:00<00:00, 20647.80it/s]We can also read xiSearch and xiFDR result files using the parser.read_xi() method which allows a more nuanced control over reading the result files - although everything theoretically can be done with the parser.read() function as well. You can read the documentation for the parser.read_xi() method here: docs.
_ = transform.summary(parser_result) Number of CSMs: 413.0
Number of unique CSMs: 413.0
Number of intra CSMs: 413.0
Number of inter CSMs: 0.0
Number of target-target CSMs: 411.0
Number of target-decoy CSMs: 2.0
Number of decoy-decoy CSMs: 0.0
Minimum CSM score: 6.808
Maximum CSM score: 27.268from pyXLMS.constants import XI_MODIFICATION_MAPPING
XI_MODIFICATION_MAPPING {'->': ('Substitution', nan),
'cm': ('Carbamidomethyl', 57.021464),
'ox': ('Oxidation', 15.994915),
'bs3oh': ('BS3 Hydrolized', 156.0786347),
'bs3nh2': ('BS3 Amidated', 155.094619105),
'bs3loop': ('BS3 Looplink', 138.06808),
'bs3_hyd': ('BS3 Hydrolized', 156.0786347),
'bs3_ami': ('BS3 Amidated', 155.094619105),
'bs3_tris': ('BS3 Tris', 259.141973),
'dssoloop': ('DSSO Looplink', 158.00376),
'dsso_loop': ('DSSO Looplink', 158.00376),
'dsso_hyd': ('DSSO Hydrolized', 176.0143295),
'dsso_ami': ('DSSO Amidated', 175.030313905),
'dsso_tris': ('DSSO Tris', 279.077658),
'dsbuloop': ('DSBU Looplink', 196.08479231),
'dsbu_loop': ('DSBU Looplink', 196.08479231),
'dsbu_hyd': ('DSBU Hydrolized', 214.095357),
'dsbu_ami': ('DSBU Amidated', 213.111341),
'dsbu_tris': ('DSBU Tris', 317.158685)}By default the xiSearch/xiFDR parser considers all modifications that are in constants.XI_MODIFICATION_MAPPING as shown above for pyXLMS version 1.5.2 - a full list of the default xi modifications is given here: docs.
my_mods = dict(XI_MODIFICATION_MAPPING)
my_mods["me"] = ("Methylation", 14.01565)
my_mods {'->': ('Substitution', nan),
'cm': ('Carbamidomethyl', 57.021464),
'ox': ('Oxidation', 15.994915),
'bs3oh': ('BS3 Hydrolized', 156.0786347),
'bs3nh2': ('BS3 Amidated', 155.094619105),
'bs3loop': ('BS3 Looplink', 138.06808),
'bs3_hyd': ('BS3 Hydrolized', 156.0786347),
'bs3_ami': ('BS3 Amidated', 155.094619105),
'bs3_tris': ('BS3 Tris', 259.141973),
'dssoloop': ('DSSO Looplink', 158.00376),
'dsso_loop': ('DSSO Looplink', 158.00376),
'dsso_hyd': ('DSSO Hydrolized', 176.0143295),
'dsso_ami': ('DSSO Amidated', 175.030313905),
'dsso_tris': ('DSSO Tris', 279.077658),
'dsbuloop': ('DSBU Looplink', 196.08479231),
'dsbu_loop': ('DSBU Looplink', 196.08479231),
'dsbu_hyd': ('DSBU Hydrolized', 214.095357),
'dsbu_ami': ('DSBU Amidated', 213.111341),
'dsbu_tris': ('DSBU Tris', 317.158685),
'me': ('Methylation', 14.01565)}If you have any additional modifications in your result file(s) the parser needs to know about them, which is done via the modifications parameter that allows for passing a custom dictionary of modifications. It is usually a good idea to base this custom dictionary on constants.XI_MODIFICATION_MAPPING and add your modifications after, as shown here for methylation.
parser_result = parser.read_xi(
"../../data/xi/1perc_xl_boost_CSM_xiFDR2.2.1.csv", modifications=my_mods
) Reading xiFDR CSMs...: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 413/413 [00:00<00:00, 27258.45it/s]You can then pass the full list of expected modifications my_mods via the modifications parameter.
_ = transform.summary(parser_result) Number of CSMs: 413.0
Number of unique CSMs: 413.0
Number of intra CSMs: 413.0
Number of inter CSMs: 0.0
Number of target-target CSMs: 411.0
Number of target-decoy CSMs: 2.0
Number of decoy-decoy CSMs: 0.0
Minimum CSM score: 6.808
Maximum CSM score: 27.268There are several other parameters that can be set, you can read more about them here: docs.